WONDERs OF SOLAR SYSTEM
The lakes of Titan, a moon of Saturn, are bodies of liquid methane that have been detected by the Cassini space probe, and had been suspected long before. The large ones are known as maria (seas) and the small ones as laci (lakes).
The possibility that there were seas of liquid methane on Titan were first suggested based on Voyager 1 and 2 data that showed Titan to have a thick atmosphere of approximately the correct temperature and composition to support them, but direct evidence wasn't obtained until 1995 when data from Hubble and other observations had already suggested the existence of liquid methane on Titan, either in disconnected pockets or on the scale of satellite-wide oceans, similar to water on Earth.
The Cassini mission affirmed the former hypothesis, although not immediately. When the probe arrived in the Saturnian system in 2004, it was hoped that hydrocarbon lakes or oceans might be detectable by reflected sunlight from the surface of any liquid bodies, but no specular reflections were initially observed.
The possibility remained that liquid ethane and methane might be found on Titan's poles, where it was expected to be abundant and stable. At Titan's south pole, an enigmatic dark feature named Ontario Lacus was the first suspected lake identified, possibly created by clouds that are observed to cluster in the area. A possible shoreline was also identified at the pole via radar imagery. Following a flyby on July 22, 2006, in which the Cassini spacecraft's radar imaged the northern latitudes (which are currently in winter), a number of large, smooth (and thus dark to radar) patches were seen dotting the surface near the pole. Based on the observations, scientists announced "definitive evidence of lakes filled with methane on Saturn's moon Titan" in January 2007. The Cassini–Huygens team concluded that the imaged features are almost certainly the long-sought hydrocarbon lakes, the first stable bodies of surface liquid found off Earth. Some appear to have channels associated with liquid and lie in topographical depressions.
Repeated coverage of these areas should prove whether they are truly liquid, as any changes that correspond with wind blowing on the surface of the liquid would alter the roughness of the surface and be visible in the radar. The high relative humidity of methane in Titan’s lower atmosphere could be maintained by evaporation from lakes covering only 0.002–0.02% of the whole surface.
Size comparison of Ligeia Mare with Lake Superior.During a Cassini flyby in late February 2007, radar and camera observations revealed several large features in the north polar region that may be large expanses of liquid methane and/or ethane, including one sea with an area of over 100,000 km² (larger than Lake Superior), and another (though less definite) region potentially the size of the Caspian Sea. A flyby of Titan's southern polar regions in October 2007 revealed similar, though far smaller, lakelike features.
Image of Titan taken during Huygens' descent, showing hills and topographical features that resemble a shoreline and drainage channels.During a close Cassini flyby in December 2007 the visual and mapping instrument observed a lake, Ontario Lacus, in Titan's south polar region. This instrument identifies chemically different materials based on the way they absorb and reflect infrared light. Based on this instrument's observations, scientists concluded that at least one of the large lakes observed on Saturn's moon Titan does in fact contain liquid, that liquid being hydrocarbons, and have positively identified the presence of ethane. This makes Titan the only other object than Earth in the solar system known to have liquid on its surface. This would make Titan a very interesting place to observe and study , to refine weather science, as differing liquid and gaseous materials and temperatures are at play there. This would help refine the science of Earth weather forecasting, allowing for better weather forecasts.
The discoveries at the poles contrast with the findings of the Huygens probe, which landed near Titan's equator on January 14, 2005. The images taken by the probe during its descent showed no open areas of liquid, but strongly indicated the presence of liquids in the recent past, showing pale hills crisscrossed with dark drainage channels that lead into a wide, flat, darker region. It was initially thought that the dark region might be a lake of a fluid or at least tar-like substance, but it is now clear that Huygens landed on the dark region, and that it is solid without any indication of liquids. A penetrometer studied the composition of the surface as the craft impacted it, and it was initially reported that the surface was similar to wet clay, or perhaps crème brûlée (that is, a hard crust covering a sticky material). Subsequent analysis of the data suggests that this reading was likely caused by Huygens displacing a large pebble as it landed, and that the surface is better described as a "sand" made of ice grains. The images taken after the probe's landing show a flat plain covered in pebbles. The pebbles may be made of water ice and are somewhat rounded, which may indicate the action of fluids.
On February 13, 2008, scientists announced that, according to Cassini data, Titan hosts within its polar lakes "hundreds of times more natural gas and other liquid hydrocarbons than all the known oil and natural gas reserves on Earth." The desert sand dunes along the equator, while devoid of open liquid, nonetheless hold more organics than all of Earth's coal reserves. In June 2008, Cassini's Visible and Infrared Mapping Spectrometer confirmed the presence of liquid ethane beyond doubt in a lake in Titan's southern hemisphere.
Models of oscillations in Titan's atmospheric circulation suggest that over the course of a Saturnian year, liquid is transported from the equatorial region to the poles, where it falls as rain. This might account for the equatorial region's relative dryness.
Impact craters
Radar, SAR and imaging data from Cassini have revealed a relative paucity of impact craters on Titan's surface, suggesting a youthful surface. The few impact craters discovered include a 440 km wide multi-ring impact basin named Menrva (seen by Cassini's ISS as a bright-dark concentric pattern). A smaller 80 km wide, flat-floored crater named Sinlap and a 30 km crater with a central peak and dark floor named Ksa have also been observed. Radar and Cassini imaging have also revealed a number of "crateriforms", circular features on the surface of Titan that may be impact related, but lack certain features that would make identification certain. For example, a 90 km wide ring of bright, rough material known as Guabonito has been observed by Cassini. This feature is thought to be an impact crater filled in by dark, windblown sediment. Several other similar features have been observed in the dark Shangri-la and Aaru regions. Radar observed several circular features that may be craters in the bright region Xanadu during Cassini's April 30, 2006 flyby of Titan.
Pre-Cassini models of impact trajectories and angles suggest that where the impactor strikes the water ice crust, a small amount of ejecta remains as liquid water within the crater. It may persist as liquid for centuries or longer, sufficient for "the synthesis of simple precursor molecules to the origin of life". While infill from various geological processes is one reason for Titan's relative deficiency of craters, atmospheric shielding also plays a role; it is estimated that Titan's atmosphere reduces the number of craters on its surface by a factor of two.
Cryovolcanism and mountains
Scientists have speculated that conditions on Titan resemble those of early Earth, though at a much lower temperature. Evidence of volcanic activity from the latest Cassini mission suggests that temperatures are probably much higher in hotbeds, enough for liquid water to exist. Argon 40 detection in the atmosphere indicates that volcanoes spew plumes of "lava" composed of water and ammonia. Cassini detected methane emissions from one suspected cryovolcano, and volcanism is now believed to be a significant source of the methane in the atmosphere. One of the first features imaged by Cassini, Ganesa Macula, resembles the geographic features called "pancake domes" found on Venus, and is thus believed to be cryovolcanic in origin.
The pressure necessary to drive the cryovolcanoes may be caused by ice "underplating" Titan's outer shell. The low-pressure ice, overlaying a liquid layer of ammonium sulfate, ascends buoyantly, and the unstable system can produce dramatic plume events. Titan is resurfaced through the process by grain-sized ice and ammonium sulfate ash, which helps produce a wind-shaped landscape and sand dune features.
A mountain range measuring 150 km long, 30 km wide and 1.5 km high was discovered by Cassini in 2006. This range lies in the southern hemisphere and is thought to be composed of icy material and covered in methane snow. The movement of tectonic plates, perhaps influenced by a nearby impact basin, could have opened a gap through which the mountain's material upwelled. Prior to Cassini, scientists assumed that most of the topography on Titan would be impact structures, yet these findings reveal that similar to Earth, the mountains were formed through geological processes
Dark terrain
In the first images of Titan's surface taken by Earth-based telescopes in the early 2000s, large regions of dark terrain were revealed straddling Titan's equator. Prior to the arrival of Cassini, these regions were thought to be seas of organic matter like tar or liquid hydrocarbons. Radar images captured by the Cassini spacecraft have instead revealed some of these regions to be extensive plains covered in longitudinal sand dunes, up to 330 meters high. The longitudinal (or linear) dunes are believed to be formed by moderately variable winds that either follow one mean direction or alternate between two different directions. Dunes of this type are always aligned with average wind direction. In the case of Titan, steady zonal (eastward) winds combine with variable tidal winds (approximately 0.5 meter per second). The tidal winds are the result of tidal forces from Saturn on Titan's atmosphere, which are 400 times stronger than the tidal forces of the Moon on Earth and tend to drive wind toward the equator. This wind pattern causes sand dunes to build up in long parallel lines aligned west-to-east. The dunes break up around mountains, where the wind direction shifts.
The sand on Titan might have formed when liquid methane rained and eroded the ice bedrock, possibly in the form of flash floods. Alternatively, the sand could also have come from organic solids produced by photochemical reactions in Titan's atmosphere. Studies of dunes' composition in May, 2008, revealed that they possessed less water than the rest of Titan, and are most likely to derive from organic material clumping together after raining onto the surface.
Climate
Titan's surface temperature is about 94 K (−179 °C, or −290 °F). At this temperature water ice does not sublimate or evaporate, so the atmosphere is nearly free of water vapor. The haze in Titan's atmosphere contributes to the moon's anti-greenhouse effect by reflecting sunlight away from the satellite, making its surface significantly colder than its upper atmosphere. The clouds on Titan, probably composed of methane, ethane or other simple organics, are scattered and variable, punctuating the overall haze. This atmospheric methane conversely creates a greenhouse effect on Titan's surface, without which Titan would be far colder. The findings of the Huygens probe indicate that Titan's atmosphere periodically rains liquid methane and other organic compounds onto the moon's surface. In October 2007, observers noted an increase in apparent opacity in the clouds above the equatorial Xanadu region, suggestive of "methane drizzle", though this was not direct evidence for rain. It is possible that areas of Titan's surface may be coated in a layer of tholins, but this has not been confirmed.
Simulations of global wind patterns based on wind speed data taken by Huygens during its descent have suggested that Titan's atmosphere circulates in a single enormous Hadley cell. Warm air rises in Titan's southern hemisphere—which was experiencing summer during Huygens' descent—and sinks in the northern hemisphere, resulting in high-altitude air flow from south to north and low-altitude airflow from north to south. Such a large Hadley cell is only possible on a slowly rotating world such as Titan. The pole-to-pole wind circulation cell appears to be centered on the stratosphere; simulations suggest it ought to change every twelve years, with a three-year transition period, over the course of Titan's year (30 terrestrial years). This cell creates a global band of low pressure—what is in effect a variation of Earth's Intertropical Convergence Zone. Unlike on Earth, however, where the oceans confine the ITCZ to the tropics, on Titan, the zone wanders from one pole to the other, taking methane rainclouds with it. This means that Titan, despite its frigid temperatures, can be said to have a tropical climate.
The number of methane lakes visible near Titan's southern pole is decidedly smaller than the number observed near the north pole. As the south pole is currently in summer and the north in winter, an emerging hypothesis is that methane rains onto the poles in winter and evaporates in summer.
Clouds
In September 2006, Cassini imaged a large cloud at a height of 40 km over Titan's north pole. Although methane is known to condense in Titan's atmosphere, the cloud was more likely to be ethane, as the detected size of the particles was only 1–3 micrometers and ethane can also freeze at these altitudes. In December, Cassini again observed cloud cover and detected methane, ethane and other organics. The cloud was over 2,400 km in diameter and was still visible during a following flyby a month later. One hypothesis is that it is currently raining (or, if cool enough, snowing) on the north pole; the downdrafts at high northern latitudes are strong enough to drive organic particles towards the surface. These were the strongest evidence yet for the long-hypothesised "methanological" cycle (analogous to Earth's hydrological cycle) on Titan.
Clouds have also been found over the south pole. While typically covering 1% of Titan's disk, outburst events have been observed in which the cloud cover rapidly expands to as much as 8%. One hypothesis asserts that the southern clouds are formed when heightened levels of sunlight during the Titanian summer generate uplift in the atmosphere, resulting in convection. This explanation is complicated by the fact that cloud formation has been observed not only post–summer solstice but also at mid-spring. Increased methane humidity at the south pole possibly contributes to the rapid increases in cloud size. It is currently summer in Titan's southern hemisphere and will remain so until 2010, when Saturn's orbit, which governs the moon's motion, will tilt the northern hemisphere towards the Sun. When the seasons switch, ethane will begin to condense over the south pole.
Research models that match well with observations suggest that clouds on Titan cluster at preferred coordinates and that cloud cover varies by distance from the surface on different parts of the satellite. In the polar regions (above 60 degrees latitude), widespread and permanent ethane clouds appear in and above the troposphere; at lower latitudes, mainly methane clouds are found between 15 and 18 km, and are more sporadic and localized. In the summer hemisphere, frequent, thick but sporadic methane clouds seem to cluster around 40°.
Ground-based observations also reveal seasonal variations in cloud cover. Over the course of Saturn's 30-year orbit, Titan's cloud systems appear to manifest for 25 years, and then fade for four to five years before reappearing again.
Prebiotic conditions and possible life
Scientists believe that the atmosphere of early Earth was similar in composition to the current atmosphere on Titan. Many hypotheses have developed that attempt to bridge the step from chemical to biological evolution. The Miller-Urey experiment and several following experiments have shown that with an atmosphere similar to that of Titan and the addition of UV radiation, complex molecules and polymer substances like tholins can be generated. The reaction starts with dissociation of nitrogen and methane, forming hydrocyan and ethyne. Further reactions have been studied extensively.
All of these experiments have led to the suggestion that enough organic material exists on Titan to start a chemical evolution analogous to what is thought to have started life on Earth. While the analogy assumes the presence of liquid water for longer periods than is currently observable, several theories suggest that liquid water from an impact could be preserved under a frozen isolation layer. It has also been observed that liquid ammonia oceans could exist deep below the surface; one model suggests an ammonia–water solution as much as 200 km deep beneath a water ice crust, conditions that, "while extreme by terrestrial standards, are such that life could indeed survive". Heat transfer between the interior and upper layers would be critical in sustaining any sub-surface oceanic life.
Detection of microbial life on Titan would depend on its biogenic effects. That the atmospheric methane and nitrogen are of biological origin has been examined, for example. Hydrogen has been cited as one molecule suitable to test for life on Titan: if methanogenic life is consuming atmospheric hydrogen in sufficient volume, it will have a measurable effect on the mixing ratio in the troposphere.
Despite these biological possibilities, there are formidable obstacles to life on Titan, and any analogy to Earth is inexact. At a vast distance from the Sun, Titan is frigid (a fact exacerbated by the anti-greenhouse effect of its cloud cover), and its atmosphere lacks CO2. Given these difficulties, the topic of life on Titan may be best described as an experiment for examining theories on conditions necessary prior to flourishing life on Earth. While life itself may not exist, the prebiotic conditions of the Titanian environment, and the possible presence of organic chemistry, remain of great interest in understanding the early history of the terrestrial biosphere. Using Titan as a prebiotic experiment involves not only observation through spacecraft, but laboratory experiment, and chemical and photochemical modelling on Earth.
An alternate explanation for life's hypothetical existence on Titan has been proposed: if life were to be found on Titan, it would be statistically more likely to have originated from Earth than to have appeared independently, a process known as panspermia. It is theorized that large asteroid and cometary impacts on Earth's surface have caused hundreds of millions of fragments of microbe-laden rock to escape Earth's gravity. Calculations indicate that a number of these would encounter many of the bodies in the solar system, including Titan.
Conditions on Titan could become far more habitable in future. Six billion years from now, as the Sun becomes a red giant, surface temperatures could rise to ~200K, high enough for stable oceans of water/ammonia mixture to exist on the surface. As the Sun's ultraviolet output decreases, the haze in Titan's upper atmosphere will deplete, lessening the anti-greenhouse effect on the surface and enabling the greenhouse created by atmospheric methane to play a far greater role. These conditions together could create an environment agreeable to exotic forms of life, and will subsist for several hundred million years, long enough for at least primitive life to form.
While the Cassini–Huygens mission was not equipped to provide evidence for biology or complex organics, it did support the theory of an environment on Titan that is similar, in some ways, to that of the primordial Earth.
There are a wide range of options for future missions to Titan that might address these and other questions, including orbiters, landers, balloons etc
0 comments:
Post a Comment